Random Features Approximation for Fast Data-Driven Control

Abstract

e

I'he goal of data-driven nonlinear control problems is to guarantee
stability or safety of an unknown system. We consider a method

based on Control Certificate Functions (CCFs) that uses Gaussian
Process (GP) regression to learn unknown quantities for control affine

dynamics. To make practical use of the data-driven GP controller,
it is necessary to compute posterior estimates in real-time feedback
systems. As computing the GP estimator is expensive, We propose a
suitable RF method to speed up computations. We turther provide
a probabilistic error analysis to propose a robust second order cone
program based controller.

Control Certificate Functions

Our goal is to design a controller that guarantees properties like safety
and stability for a control affine dynamical system: & = f(x) + g(z)u.
We use an approach based on control certificate functions, a family
of functions including control Lyapunov and Barrier functions. They
are used as a constraint in a min-norm quadratic program (QP) to
synthesize controllers that guarantee our desired properties:

() = argmin Jul (CCF-QP)
st. VCO(2) (f(z) + g(z)u) +a(C(x)) <0,

=C(z,u)
However, to implement this QP, is it necessary to know the dynamics f
and g. Since we don’t have access to those, we estimate C(z,u). We
consider a setting where the model is unknown but that a valid CCF
function C" and « for the true plant is known.

Random Features Approximation

Computing the GP estimator can become prohibitively expensive for
large datasets, which is an issue since speed is critical in real time control
systems. We introduce a random feature approximation of the affine
compound kernel to speed up training and prediction time.
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Y(x) = s [Sz’n(wl ) cos(wy x) ... sin(wp ) COS(wD/Qa:')]T

where w; 9 p(w) and p(w) is the Fourier transform of the kernel (which

by Bochner’s theorem, is a valid density function). Thus we have that
k(z — ') = Ey[v.(x) ", (2')]. Sutherland and Schneider [2] show that
with probability 1 — 09, we have € pointwise error bounds on the error
of this estimation, for some appropriate 1. We can compute a random
feature approximation in O(nD?) time and O(nD) memory, which is
computationally attractive it D < n.

Kimia Kazemian!, Sarah Dean?

“Department of Computer Science, Cornell University

Data-driven Controller with GP Regression

We develop a data-driven control synthesis method which uses data
of the form {(z;, C(z;,u;)}", We can approximately measure C(z, u)
using finite differencing methods on sampled trajectories from the true
system. However, to ensure the the true system certifies the desired
property, we must account for prediction errors. Therefore, we use GP
regression. Under GP assumptions, given a set of finite measurements
of features and labels, at a query point, a posterior distribution can be
derived. We note that C(x, w) is affine in u.For convenience of notation
denote s = [z7 1 u']", and define X = X x {1} x R™

Definition: Define the Affine Dot Product (ADP) compound kernel of

(m~+1) individual kernels k; : X x X — R as k. : X x X — R given by

' /
ke(s,s") = i (% 7) . B
C\*“) . _u_ . km+1($7 m/) _u/_

Prior work [1] uses that with a probability of at least 1 — 01, we have:

Co(u) < palu) + fog(u) .
As first proposed by [1]|, we construct a Second-Order Cone Program

(SOCP) which defines a data-driven min-norm stabilizing feedback
control law v*: R" — R™:

)

u*(x) = arg min [[u]]

I} (GP-CCF-SOCP)
st pg(u)+Bo(u)+a(Clx)) <0

Results on Random Features GP control

We use a random features approximation to estimate the ADP compound
kernel. We approximate only the state-dependent portion, defining the
random feaures as:

o(si) = Wl(l’z)T wjbi (i)' . U%nwmﬂ(l‘ﬂ = (o(;) ulx )
where ¢(z) := blkdiag|y(x); ...; Ymi1(x)|. Let & € C”XD(m‘H)-be the

th

matrix whose 7" row is ¢(s;) . Then the posterior mean and covariance

can be approximated by
fa(w) = @(s) (®'d+ N\, I) 1P 2
6.(1) = Mp(s) (D' D+ X, T) ().
Where z is the vector containing the output measurements. Note that
the time complexity of computing p is O(n(m + 1)°D?) as opposed to
O(n?). For the purposes of robustly guaranteeing feasibility of (CCF-

QP), it is necessary to track how the approximation error accumulates
in our computation of the posterior.

Error Bounds

We provide an error analysis on the approximate mean and variance,
which allows for the design of a quadratic SOCP.

Proposition: under reasonable assumptions, with a probability of
1— (61 + d2) we have:

C(s) = fre(w)| < B4(u) + e(v]|ug]| + efu* + A)
where v, ¢ and 0 depend on information from the training data, number
of training points, 3, A, and the measurement noise. Finally, we propose

a fast and robust convex optimization based min-norm controller using
the error bounds, that is both computationally efficient and robust:

RF-CCF-SOCP

u'(x) = arg minHuH%
ueclR™

st fe(u) + BE.(u) + e(v]ug|| + of|u]]* + A) + a(Cx)) <0

Experiments

We present preliminary experiments of the random features approach for
an adaptive cruise control system [1|. There is is a reduction of 85% in
training time when using RF approximation vs ADP compound kernel.
We see that the RF predictions are nearly identical, although sometimes
it underestimates the variance compared with the full ADP kernel, which

highlights the importance of incorporating the error analysis presented.
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Figure: Predicted mean (dot) and variance (bars) for C in the final episode of training
data.
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