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Abstract
Modern data-driven control applications call for flexible nonlinear models that are amenable to
principled controller synthesis and realtime feedback. Many nonlinear dynamical systems of in-
terest are control affine. We propose two novel classes of nonlinear feature representations which
capture control affine structure while allowing for arbitrary complexity in the state dependence. Our
methods make use of random features (RF) approximations, inheriting the expressiveness of kernel
methods at a lower computational cost. We formalize the representational capabilities of our meth-
ods by showing their relationship to the Affine Dot Product (ADP) kernel proposed by Castañeda
et al. (2021) and a novel Affine Dense (AD) kernel that we introduce. We further illustrate the
utility by presenting a case study of data-driven optimization-based control using control certifi-
cate functions (CCF). Simulation experiments on a double pendulum empirically demonstrate the
advantages of our methods.
Keywords: Random Features, Control-Affine Systems, Control Certificate Functions.

1. Introduction

Modern control applications require modelling systems with complex and nonlinear dynamics.
Modern machine learning techniques offer a data-driven solution. From deep learning to kernel
methods, learning-based approaches fit models to data. Highly expressive models can approximate
arbitrary functions, and therefore model arbitrarily complex phenomena. However, this comes at a
cost—they can be computationally expensive to train and difficult to use for the purpose of synthe-
sizing a controller. This poses a challenge in real-time feedback systems.

Linear regression is a straightforward approach for learning dynamical models from data, so
long as a suitable nonlinear feature representation, i.e., set of basis functions, is known (Mania
et al., 2020). However, selecting proper basis functions is often challenging and requires mod-
elling detailed properties of the unknown dynamics. One solution is to choose a set of random
basis functions to generate feature vectors of fixed dimension. This approach, called random fea-
tures (RF), can achieve high expressiveness as long as the dimension of the feature vectors is large
enough (Rahimi and Recht, 2008). Random features have proven useful for dynamical systems
forecasting (Giannakis et al., 2023), receding horizon control (Lale et al., 2021), and policy learn-
ing (Lale et al., 2022).

We propose two novel classes of random feature representations suitable for principled data-
driven control (Section 3). Our key insight is to leverage the control-affine structure of many non-
linear dynamics of interest, which enables principled optimization-based approaches for controller
synthesis. We propose two distinct methods for incorporating this structure into random basis func-
tions and formalize their representation guarantees by showing that they approximate functions in a
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Reproducing Kernel Hilbert Space (RKHS). One of our methods approximates the Affine Dot Prod-
uct (ADP) kernel proposed by Castañeda et al. (2021), while the other corresponds to a novel Affine
Dense (AD) kernel that we propose. The RF methods significantly reduce the computational time
and memory complexity compared to their kernel counterparts.

To showcase the utility of an explicit control-affine structure, we present a case study for non-
linear control in Section 4. Our data-driven approach is based on Control Certificate Functions
(CCFs), which are utilized to synthesize controllers that provably achieve properties such as safety
and stability (Taylor et al., 2021). CCFs have been used in a range of applications from robotics to
multi-agent systems (Artstein, 1983; Ames et al., 2014; Nguyen et al., 2016; Pickem et al., 2017),
including in a data-driven manner (Castañeda et al., 2021; Castañeda et al., 2021; Taylor et al., 2021;
Choi et al., 2023). Simulations on a double inverted pendulum illustrate the benefits of our models
when used in a certainty-equivalent manner. In appendix B.2, we additionally derive uncertainty
estimates analogous to those of Gaussian process (GP) regression, and use them to propose a robust
data-driven controller in appendix D. We highlight that the approximation methods that we propose
may be broadly of interest for any control application which makes use of GPs (Koller et al., 2018;
Caldwell and Marshall, 2021; Bradford et al., 2019; Hewing et al., 2020; Li et al., 2021).

2. Problem Setting and Preliminaries

In this work, we consider an affine modelling and prediction problem inspired by applications in
data-driven control. We first define the general problem of interest, and then give several examples
that arise in the context of learning for dynamics and control.

Definition 1 (Control-affine modelling problem) For data of the form {(xi,ui, zi)}Ni=1, find a
function ĥ : X ×U → R which i) is affine in its second argument and ii) accurately models the
relationship between (x,u) and z, i.e. ĥ(xi,ui) is not far from zi.

Such a modelling problem naturally arises in applications involving nonlinear control-affine
systems. The dynamics are described in either continuous or discrete time:

ẋ = f(x) + g(x)u or xt+1 = f(xt) + g(xt)ut. (1)

Here, x∈X ⊆Rn is the system state, and u∈U⊆Rm is the control input. The nonlinear function f
determines the evolution of the state in the absence of control inputs, while gmodels state-dependent
actuation. Control-affine dynamics arise naturally from manipulator equations (Murray and Hauser,
1991; Tedrake, 2023), and are thus prevalent in applications like robotics. While many systems
are known to follow dynamics of the form (1), the precise form of f and/or g may be unknown.
Data-driven approaches enable the control of systems with entirely or partially unknown dynamics.
There are many examples of modelling tasks that arise in such data-driven control settings.

Example 1 Consider a model predictive control setting in which the evolution of the state itself
must be predicted (Lale et al., 2021). For a discrete-time control-affine system (1) with unknown
dynamics and direct state observation, a sequence of states and inputs {(xi,ui)}Ni=0 defines n
modelling problems of the form presented in Definition 1: one for each state dimension.

Example 2 Consider again model predictive control, now for continuous time control-affine dy-
namics (1). A sequence of sampled states {xi}Ni=0 can be used to approximate {ẋi}Ni=1 with forward
finite differencing and define n modelling problems of the form presented in Definition 1.
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Example 3 Consider Certificate Function Control (Taylor et al., 2021), which enforces safety or
stability using a known certificate function C :X →R. For continuous time control-affine dynam-
ics (1), such controllers require computing Ċ : X ×U → R, which cannot be done directly when
the dynamics are unknown. However, a sequence {C(xi)}Ni=0 can be computed from a sequence of
sampled states and the known function C. Then, finite differencing approximates the time derivative,
resulting in a problem of the form presented in Definition 1.

Example 4 For any of the previous examples, suppose that an approximate model of the dynamics
f̃ and g̃ is known. Then learning residual error dynamics also results in a problem of the form
presented in Definition 1 (see e.g., Taylor et al. (2021); Castañeda et al. (2021)).

The examples above serve to motivate the relevance of the modelling problem in Definition 1.
We now turn to background and preliminaries on solving it. Our focus is on nonparametric tech-
niques which can model phenomena of arbitrary complexity. We review kernel regression, which is
both nonparametric and amenable to uncertainty quantification, and random features approximation,
which allows for computational efficiency.

2.1. From Linear to Kernel Regression

We begin by reviewing regression approaches for general data containing input vectors {si}Ni=1⊂Rd

and a target output variable {zi}Ni=1⊂R. Our starting point is parametric linear regression, in which
predictions depend linearly on a known nonlinear feature function of the inputs. Let ϕ :Rd →RD

map an input vector s ∈ Rd to a feature vector ϕ(s) ∈ RD. The feature function, also known
as a basis function, maps the input vectors to a higher-dimensional feature space, where a linear
relationship can be established more easily.

Linear least-squares regression (Watson, 1967) models the relationship as ĥ(s) = ŵ⊤ϕ(s),
where the parameter ŵ∈RD is learned from data by solving

min
w∈RD

N∑
i=1

(ϕ(si)
⊤w − zi)

2 + λ∥w∥22, (2)

where λ ≥ 0 is a regularization parameter. Let the matrix Φ∈RN×D and the vector z∈RN be the
aggregation of rows {ϕ(si)⊤}Ni=1 and {zi}Ni=1, respectively. Then the prediction is

ĥ(s) = ϕ(s)⊤(Φ⊤Φ+ λID)
−1Φ⊤z = ϕ(s)⊤Φ⊤(ΦΦ⊤ + λIN )−1z. (3)

The first equality is the closed-form solution to the least squares objective, and the second
leverages the kernel trick (Scholkopf and Smola, 2018; Müller et al., 2018). The significance of this
reformulation is that the vector Φϕ(s) =: k(s) and matrix ΦΦ⊤ =: K can be computed using only
inner products of basis functions evaluated on training data. This is attractive because the class of
basis functions determine the complexity and richness of the modelled relationship between inputs s
and outputs z. While low-dimensional bases may suffice for highly structured processes, generally,
a suitable compact basis may not be known a priori.

Kernel methods allow for expressive basis functions of arbitrarily high or infinite dimension. A
kernel function k : Rd×Rd → R generalizes inner products between basis functions, and is used
as a nonparametric approach for representing complex functions. Appropriately defined, kernel
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ridge regression corresponds to regression in Reproducing Kernel Hilbert Spaces (RKHS) (Wend-
land, 2004). Many RKHS are dense in the set of continuous functions, enabling arbitrarily accurate
representation of continuous functions via kernel regression. The following lemma presents a suffi-
cient condition for checking that a kernel function defines a RKHS. It is a direct implication of the
Moore–Aronszajn theorem and Lemma 1 in Berlinet and Thomas-Agnan (2011).

Lemma 2 Let H be some Hilbert space with inner product ⟨·, ·⟩. A function k :Rd×Rd→R is a
reproducing kernel if there exists a mapping φ :Rd→H such that k(s, s′)=⟨φ(s), φ(s′)⟩.

In addition to their expressivity, kernel methods are amenable to theoretical guarantees and un-
certainty characterization. Popularized from the Bayesian perspective as Gaussian Process (GP)
regression (Williams and Rasmussen, 2006), confidence intervals on kernel predictions can be de-
rived even in frequentist settings (Srinivas et al., 2009). We discuss this perspective further in
appendix B.1 as it is useful for robust control. The drawback of kernel methods is computation.
Algorithms have superlinear complexity in the number of data points. In particular, computing the
kernel weights can be prohibitively expensive for large datasets. Solving (3) generally requires
O(N3) time and O(N2) memory.

2.2. Random Feature Approximation

Rather than using kernel methods directly, we propose basis functions which are expressive, general
purpose, and yet finite-dimensional. Consider a parametric family of basis functions b :Rd×Rp→R.
Then for parameters {ϑj}Dj=1 ⊂ Rp sampled i.i.d. from a fixed probability distribution p(ϑ), the

random basis is defined asϕ(s) =
[
b(s;ϑ1) b(s;ϑ2) . . . b(s;ϑD)

]⊤. Random basis functions
of this form approximate rich class of functions in the sense that ϕ(s)⊤ϕ(s′) is a Monte-Carlo
estimator which converges uniformly to a kernel k(s, s′) (Rahimi and Recht, 2008). The rate of
convergence is controlled by the feature dimension D and the particular kernel depends on the
definition of b(·;ϑ) and p(ϑ).

The underlying observation behind random features is a simple consequence of Bochner’s The-
orem (Avron et al., 2017): For every normalized shift-invariant kernel (i.e., k(0) = 1), there is a
probability density function p(·) on Rd such that

k(s, s′) =

∫
ϑ∈Rd

e−i2πϑ⊤(s−s′)p(ϑ)dϑ =: F(p(ϑ)). (4)

In other words, the inverse Fourier transform F−1 of the kernel k(·) is the probability density
function p(·). This implies a one-to-one correspondence between any shift invariant kernel and a
random features basis.

Example 5 (Random Fourier basis) The random Fourier basis consists of sinusoidal nonlinear-
ities of the form b(s;ϑ) =

[
cos(ϑ⊤s) sin(ϑ⊤s)

]
. When ϑ is sampled from a Gaussian distribu-

tion, i.e., p(ϑ) ∼N (0, 2γId), then the random Fourier basis approximates the radial basis func-

tion (RBF) kernel k(s, s′)= e
− 1

γ
∥s−s′∥22 .

The randomized nonlinear expansions provide a compact and computationally efficient alterna-
tive to the RKHS representations. This is particularly attractive when the number of data points is
large. Recall from the prior section the feature matrix Φ ∈RN×D appearing in the prediction (3).
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Since ϕ(s)∈RD and Φ⊤Φ is a D×D matrix, the computation only depends on the dimension of
our feature space. Hence, we can compute a random feature approximation in O(ND2) time and
O(ND) memory, which is computationally attractive when D<N .

3. Random Features for Control-Affine Modelling

In this section, we use ideas from kernel regression and random feature approximations to propose
representations which capture the control-affine structure from Definition 1. We first present two
general approaches for defining basis functions that are affine in the control variable. Then, we
present RKHS representation guarantees by showing that the random basis approximates particular
kernels. Finally, we present experiments which illustrate the predictive modelling capabilities of the
proposed methods.

3.1. Control-Affine Basis Functions

The control-affine modelling problem (Definition 1) allows for complex dependence on the state
variable, but imposes a restriction on the control variable. Given any arbitrary state-dependent
bases ψi :X →RD for i = 1, ...,m+1, we propose the following two basis functions that are affine
in the control variable u.

Definition 3 (Affine dot product (ADP) bases) The basis ϕc :X×U→RD(m+1), given by

ϕc(x,u) =
[
u1ψ1(x)

⊤ . . . umψm(x)⊤ ψm+1(x)
⊤]⊤ ,

is the ADP basis of m+1 individual basis functions ψi :X →RD, i = 1, . . . ,m+1.

As we show in the following section (see Theorem 6), the ADP bases approximate the affine dot
product (ADP) kernel, which was first proposed by Castañeda et al. (2021). Note that the ADP bases
can also be written as the product of blkdiag(ψ1(x), ...,ψm+1(x)) with the vector [u⊤ 1]⊤. This
basis expands the feature dimension for every dimension of the control input, resulting in dimension
which scales by m+1. This observation motivates a second proposed representation.

Definition 4 (Affine dense (AD) bases) The basis ϕd :X×U→RD, given by

ϕd(x,u) =
[
ψ1(x) . . .ψm+1(x)

] [u
1

]
is the AD basis of m+ 1 individual basis functions ψi :X →RD, i = 1, . . .m+1.

Compared with the ADP basis, the AD basis is more compact. For individual basis functions of
dimension D, the AD basis will be of dimension D, whereas the ADP basis will be of dimension
D(m+1). Considering the linear regression use case, this means that AD has O(ND2) time and
O(ND) memory complexity, whereas for ADP it is O(N(m+ 1)2D2) and O(N(m+ 1)D).

Leveraging ideas from random Fourier features, we propose control-affine basis functions con-
structed with state-dependent random Fourier basis functions ψi for i = 1, . . . ,m+1:

ψi(x) :=
√
2/D

[
sin(ϑ⊤

i,1x) cos(ϑ⊤
i,1x) . . . sin(ϑ⊤

i,D/2x) cos(ϑ⊤
i,D/2x)

]⊤
, (5)
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where weights {ϑi,j}D/2
j=1 are drawn i.i.d. from the distribution pi(ϑ) for i = 1, . . . ,m+1. As

described in Example 5, each of these individual basis functions approximates a shift invariant
kernel corresponding to the Fourier transform of the density pi(ϑ) (Rahimi and Recht, 2008, 2007).
In other words, Eϑ∼pi(·)[ψi(x)

⊤ψi(x
′)] = ki(x− x′) where ki(v) = F(pi(ϑ))[v].

3.2. Representation Guarantees

We now develop representation guarantees for the compound bases by showing which kernels they
approximate. The affine dot product (ADP) kernel was first proposed by Castañeda et al. (2021) for
systems with control-affine dynamics.

Definition 5 (Affine dot product (ADP) kernel) Define kc :X×U×X×U→R, given by

kc((x,u), (x
′,u′)) :=

[
u⊤ 1

]
diag(k1(x,x

′), · · · , km+1(x,x
′))

[
u′⊤ 1

]⊤
,

as the Affine Dot Product (ADP) compound kernel of m+1 individual kernels ki :X×X →R.

The following theorem shows that the ADP basis approximates the ADP kernel.

Theorem 6 (ADP Approximation) For i = 1, ...,m+1, suppose the basis functionsψi are defined
according to (5) with pi the inverse Fourier transform of a shift invariant kernel ki. Let ϕc be the
ADP compound basis of ψi and let kc the compound ADP kernel of ki. Then

E[ϕc(x,u)
⊤ϕc(x

′,u′)] = kc((x,u), (x
′,u′)).

The result follows by relating the dot product of features to the diagonal matrix in the ADP kernel.
We defer all formal proofs to appendix A.

An alternative way to understand the ADP random feature approximation is to interpret the
(m+1)× (m+1) diagonal matrix of kernels as an operator valued kernel. This operator valued
kernel is the sum of m+1 decomposable kernels, as defined by Brault et al. (2016) (Definition 3).
The ADP block diagonal matrix of basis functions can be interpreted through their framework as a
random feature approximation for this operator valued kernel.

We now turn to the affine dense basis. First, we define a novel Affine Dense compound kernel.

Definition 7 (Affine dense (AD) kernel) For m+1 individual kernels ki :X×X →R, letD(x,x′)
be the diagonal matrix with ith entry as ki(x−x′), andA(x,x′) a matrix with zero on the diagonal
and [A(x,x′)]ij = ki(x)kj(x

′) for i ̸= j ∈ [m+1]. Then, define the Affine Dense (AD) compound
kernel as kd : X×U×X×U→R, given by

kd((x,u), (x
′,u′)) :=

[
u⊤ 1

] (
D(x,x′) +A(x,x′)

) [
u′⊤ 1

]⊤
.

Notice that the diagonal matrix D(x,x′) in the AD kernel is similar to the ADP kernel. How-
ever, the AD kernel additionally includes the dense matrixA(x,x′). Due to this second dense term,
the AD compound kernel is not shift invariant in x. As a result, it is not possible to view A+D as
a shift invariant operator-valued kernel, and thus the results of Brault et al. (2016) cannot be used to
derive a random features approximation. Furthermore, it is not immediately clear whether the AD
kernel is indeed a valid reproducing kernel. We therefore begin by showing that it is.
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Theorem 8 (AD kernel) Let kd((x,u), (x′,u′)) be as in Definition 7. Suppose each ki(x,x
′) is

a normalized shift invariant reproducing kernel. Then, kd((x,u), (x′,u′)) is a reproducing kernel.

To prove this result, we use the crucial (but non-obvious) claim that if k(x,x′) is a normalized
shift invariant reproducing kernel, then k(x,x′)−k(x)k(x′) is also a reproducing kernel. To prove
that the claim is true, we construct an explicit feature mapping of the form required in Lemma 2.
With the claim in hand, the proof follows by algebraic manipulations and the fact that the set of
reproducing kernels is closed under addition. Therefore, the AD kernel kd is a reproducing kernel
and thus defines a RKHS. We next show that the AD basis functions approximate this RKHS.

Theorem 9 (Affine-dense kernel approximation) Suppose that for i = 1, ...,m+1 the basis func-
tionsψi are defined according to (5) with pi the inverse Fourier transform of a shift invariant kernel
ki. Let ϕd be the AD compound basis of ψi and let kd be the compound AD kernel of ki. Then
E[ϕd(x,u)

⊤ϕd(x
′,u′)] = kd((x,u), (x

′,u′)).

So far our results show that the basis functions we propose approximate kernel regression in
expectation. When the dimension D is large enough, the approximation error can be bounded
with high probability (Rahimi and Recht, 2007; Sutherland and Schneider, 2015). In particular,
Sutherland and Schneider (2015) show conditions under which the pointwise approximation error
is no more than ϵ with probability depending on D and ϵ. We therefore conclude with a result which
shows that when the individual kernels have bounded approximation errors, so do the compound
kernels. In Appendix B.3, we further derive bounds on the prediction errors and confidence intervals
for use in robust control.

Proposition 10 (Kernel Approximation Errors) Consider the ADP kernel kc(s, s′) and the AD
kernel kd(s, s′) from Definitions 5 and 7, respectively. Consider {ki(x)}m+1

i=1 which are the individ-
ual kernels used to construct the ADP and the AD kernels. Recall ψ from 5. Suppose |ki(x)| ≤ 1
and |ki(x)−ψi(x)

⊤ψi(x)|≤ϵ for all x ∈ X and i∈ [m+ 1]. Then, we have

max{|kc(s, s′)− ϕc(s)
⊤ϕc(s

′)|, |kd(s, s′)− ϕd(s)
⊤ϕd(s

′)|} ≤ ϵ(u⊤u′ + 1) (6)

where ϕc and ϕd are defined in Theorems 6 and 9 respectively.

3.3. Numerical demonstration

In this section, we empirically1 study the performance of the the two random features methods
(ADP-RF and AD-RF) as well as the corresponding kernel methods (ADP-K and AD-K). We focus
on performance in terms of prediction accuracy. In the next section, we also demonstrate the utility
of these models for data-driven control.

We consider a prediction task relating to a double pendulum with actuation at both joints. The
state of this system x ∈ R4 consists of two angle variables and two angular velocities, while the
control input u ∈ R2 consists of the two joint actuation torques. In appendix E.1, we present a
full derivation of the dynamics equation, which is affine in the control inputs. We simulate the
system under closed-loop control and sample at 10 Hz. The controller is imperfectly designed to
bring the system to an upright and balanced configuration; Further controller details are deferred to

1. Code is available at https:github.com/kimzemian/swift_affine_mastery
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Figure 1: Evaluation of models, comparing prediction accuracy on test data (left) and training time
on 8859 points (right) for a prediction problem on a double pendulum system. Horizontal
lines and markers correspond to kernel methods. Random features are sampled 10 times
at varying dimensions; the left panel displays median and quartiles over the trials while
the right panel shows the mean. Increasing the feature dimension of each state-dependent
basis ψi(x) results in lower RMSE but longer training time, especially for ADP-RF.

the following section. We collect a dataset containing 226 trajectories, each starting at a different
initial point and lasting 5 seconds. The dataset if of the form {{(xe

i ,u
e
i ), z

e
i }Li=1}Ee=1 where zi is the

time derivative of a scalar function of the state (Example 3); details are described in the following
section. We split the data into train and evaluation subsets with an 80/20 split, so the train size is
8859 and test size is 2215, formulating a prediction task of the form in Definition 1.

We compare the performance of five models: three kernel methods (Vanilla-K, ADP-K, AD-
K) and two random features methods (ADP-RF, AD-RF). Vanilla-K is an RBF kernel (Example 5)
that operates on the concatenated state and input without any affine structure. ADP-K and AD-K
(Definitions 5 and 7) use RBF kernel on the state variable, whereas, ADP-RF and AD-RF are as
defined in Theorems 6 and 9 with the corresponding random Fourier bases (5) as in Example 5.
For all models, γ = 1 and λ = 1. Figure 1 plots the performance in terms of test accuracy and
training time. The left panel shows median and quartile RMSE on the evaluation split and the right
panel shows the average training time. The kernels are represented by horizontal lines and markers.
Vanilla-K performs worse than the affine kernels since it does not capture the affine structure, while
AD-K and ADP-K have similar performance. For the RF models, we examine the effect of the
random features approximation of state-dependent samples ψi(x) of dimension D. ADP-RF has
lower error for smaller feature dimension, but both RF methods quickly approach the performance
of the kernel methods. For small D, the RF methods are both much faster. Train time increases
with D more quickly for ADP-RF than AD-RF, as training ADP-RF scales quadratically with m+
1. Comparing the RF models, Figure 1 suggests that, although training with AD-RF is faster as
compared to ADP-RF, the later has smaller RMSE. We attribute this to the higher dimensionality
of the ADP compound basis, which allows for greater expressivity. In Appendix C, we present
extensive experiments with synthetic data demonstrating the relationship between training time and
RMSE. These show that for fixed training time, AD-RF outperforms ADP-RF on accuracy when D
is sufficiently large, and this performance advantage grows as input dimension m increases.
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4. Case Study: Certificate Function Control

A key motivation for our work is that the affine structure of our data-driven models is amenable
for use in control tasks. We therefore describe how to incorporate these models into a particular
approach to nonlinear control. We then evaluate closed loop performance of our models.

Background As a case study, we demonstrate a nonlinear control technique based on control cer-
tificate functions as proposed by Taylor et al. (2021), which we refer to for a more rigorous and
precise introduction. This approach generalizes and unifies the use of control Lyapunov functions
(CLFs) to guarantee stability (Galloway et al., 2015) and control barrier functions (CBFs) to guar-
antee safety (Ames et al., 2016). Certificate function control requires a continuously differentiable
certificate function C : Rn → R satisfying certain properties (Taylor et al., 2021), along with a
comparison function α : R → R+. Then, an optimization-based state feedback controller can be
defined which will guarantee desired properties such as stability or safety by construction (Ames
et al., 2019). Given some “desired” control input ud(x), the CCF quadratic program (QP) is:

u∗(x) = argmin
u∈Rm

∥u∥22 + c1 ∥u− ud(x)∥22 (CCF-QP)

s.t. ∇C(x)⊤(f(x) + g(x)u)︸ ︷︷ ︸
Ċ(x,u)

+α(C(x)) ≤ 0.

Data-driven Control We now suppose that the dynamics f and g are unknown, so the CCF-QP
controller cannot be directly implemented. We assume that a valid CCF C and comparison function
α for the unknown true system is given2. Given a sampled trajectory {(xi,ui)}Ni=1, we construct a
control affine modelling problem for Ċ :X ×U →R as described in Example 3. We therefore use
methods discussed in Section 3 to create a control-affine model ĥ(x,u) which can be used in place
of the unknown Ċ(x,u) function in (CCF-QP) in a certainty equivalent (CE) manner. Because
the model ĥ is affine in u, the resulting optimization problem is still a QP. In Appendix E.2, we
provide additional details on constructing this QP for both kernel and RF methods. We also discuss
methods for robust, rather than CE, data-driven control. The robust approach requires estimates
of uncertainty (e.g. as in Gaussian process regression) as well as the pointwise RF approximation
errors, and results in a second order cone program (SOCP), see Appendix D.

Simulation experiments We simulate data-driven CCF control of the double pendulum intro-
duced in Section 3.3, where the goal is to swing up and balance in the upright position x=0 with
only an incorrect model of the dynamics f̃ , g̃. Knowing only its degree of actuation, we may con-
clude that the dynamics are feedback linearizable and therefore we can define a Control Lyapunov
Function (CLF) without the exact dynamics model (Taylor et al., 2019). Specifically, we define
C(x) = x⊤Px, α(x) = .725x, ud(x) a feedback linearizing controller for the incorrect f̃ , g̃, and
c1 = 25. Full details are provided in Appendices E.3, E.4.

We first define a “nominal” QP controller which selects inputs according to (CCF-QP) with the
nominal model f̃ , g̃. We use this controller to gather trajectories and define a dataset as described
in Section 3.3. We subsample the data by 1/5 and derive data-driven models of Ċ(x,u) as outlined
in the paragraph above. We consider four data-driven QP controllers using the four affine models:
AD-K, ADP-K, AD-RF, and ADP-RF. For the data-driven controllers, we augment the initial dataset

2. This assumption is met for feedback linearizable systems as long as the the degree of actuation of the true dynamics
model is known (Taylor et al., 2019). For example, many robotic systems satisfy this assumption.
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Figure 2: Left: The value of the Lyapunov function C(x) over time for nominal, oracle, and data-
driven controllers with initial state [2, 0, 0, 0]. Right: Illustration of the pendulum config-
urations over time. Nominal fails to balance the pendulum; data-driven methods succeed.

with episodic data collection: we run the controller for 10 seconds at 10 Hz, retrain, and repeat for
ten episodes. The RF dimension is D = N/5 for N the size of the training data. Finally, we
compare the performance of the the nominal and data-driven methods with an “oracle” controller
that solves (CCF-QP) with the true dynamics. Figure 2 plots the system trajectory in terms of the
Lyapunov function C(x) and the pendulum configuration. While the nominal controller fails to
balance the pendulum, the data-driven controllers succeed and are similar to each other.

5. Conclusion

This work considers a control affine modelling problem and proposes two classes of random basis
functions as a solution: ADP and AD. The representation guarantees of these methods are made for-
mal by connection to kernel regression in corresponding RKHSs. A case study in nonlinear control
with CCF illustrates the utility of control affine models. Numerical experiments demonstrate the
performance of the RF and kernel methods in terms of accuracy, computation time, and closed loop
control performance. In Appendix B.3, we additionally present uncertainty estimates analogous to
Gaussian process (GP) regression, as well as a corresponding robust data-driven control. We high-
light that the approximation methods that we propose may be broadly of interest for any control
application which makes use of GPs.

Our work opens the door to many future questions of interest. It would be interesting to de-
velop kernels and random features tailored to particular control applications. One could explore the
application of our methods to additional control techniques, like feedback linearization or model
predictive control. It would be interesting to develop principled techniques for acquiring data, ex-
panding from the simple warm start episodic approach that we used. Furthermore, additional meth-
ods for approximating kernels would provide alternatives to speeding up kernel and GP regression
for data-driven control.
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Appendix A. Omitted Proofs

A.1. Proof of Theorem 6

First note that for the ADP basis,

ϕc(x,u)
⊤ϕc(x

′,u′) =
[
u⊤ 1

]
diag(ψ1(x)

⊤ψ1(x
′), · · · ,ψm+1(x)

⊤ψm+1(x
′))

[
u′⊤ 1

]⊤
.

The result holds because by assumption, the expectation of ψi(x)
⊤ψi(x

′) equals ki(x− x′).

A.2. Proof of Theorem 8

Consider the following claim: if k(x,x′) is a normalized shift invariant reproducing kernel, then
k(x,x′)− k(x)k(x′) is also a reproducing kernel.

For now we take the claim as true. Then notice that the AD kernel can also be written as

kd((x,u), (x
′,u′)) =

[
u⊤ 1

]
D̃(x,x′)

[
u⊤ 1

]⊤
+
[
u⊤ 1

]
Ã(x,x′)

[
u⊤ 1

]⊤
,

for D̃(x,x′) a diagonal matrix with ith entry as ki(x − x′) − ki(x)ki(x
′), and Ã(x,x′) a matrix

whose entry at i, j is ki(x)kj(x
′) for i, j ∈ [m + 1]. Since sums of kernels are also kernels, it

suffices to show that each term is a kernel. If the claim above is true, then the first term is a special
case of the ADP kernel, and is therefore a reproducing kernel by Lemma 3 of Castañeda et al.
(2021). The second term can be directly written as an inner product

[
u⊤ 1

]
Ã(x,x′)

[
u⊤ 1

]⊤
=[

u⊤ 1
]
ϕ(x)ϕ(x′)⊤

[
u⊤ 1

]⊤ where ϕ(x) = [k1(x) . . . km+1(x)]
⊤. Therefore, it is a kernel.

It now remains to prove the claim. We proceed by showing that k(x,x′) − k(x)k(x′) can be
written as the inner product of some explicit feature representation. Let k(x,x′) = ⟨φ(x),φ(x′)⟩
for some feature function mapping to an arbitrary real Hilbert space H, φ : X → H. This must
exist since k is a reproducing kernel (Berlinet and Thomas-Agnan, 2011). Then

k(x,x′)− k(x)k(x′) = ⟨φ(x),φ(x′)⟩ − ⟨φ(x),φ(0)⟩⟨φ(x′),φ(0)⟩ = ⟨φ(x), (I − P)φ(x′)⟩

where I is identity operator and P : H → H is defined as the linear operator Pv = φ(0)⟨φ(0),v⟩
for v ∈ H. We now argue that I − P is a bounded self-adjoint positive operator; it is bounded, i.e.
maps bounded subsets to bounded subsets, since I and P(by Cauchy Schwarz) are bounded; it is
positive, i.e., the quadratic form v 7→ ⟨v, (I − P)v⟩ is positive semi-definite:

⟨v, (I − P)v⟩ = ∥v∥2H − ⟨φ(0),v⟩2 ≥ ∥v∥2H − (∥φ(0)∥H∥v∥H)2 = 0.

The first inequality holds by Cauchy Schwarz, and the final equality holds because the kernel is
normalized, i.e., k(0) = ∥φ(0)∥2H = 1. It is self-adjoint:

⟨v, (I − P)w⟩ = ⟨v,w⟩ − ⟨v,φ(0)⟩⟨φ(0),w⟩,
= ⟨Iv,w⟩ − ⟨φ(0)⟨φ(0),v⟩,w⟩ = ⟨(I − P)v,w⟩.

Therefore by theorem 13.15 in Schechter (2001), there exists a unique positive linear operator L
such that I − P = L2, and therefore

k(x,x′)− k(x)k(x′) = ⟨φ(x), (I − P)φ(x′)⟩ = ⟨Lφ(x),Lφ(x′)⟩.

Therefore, we have constructed an explicit feature representation which proves the claim.
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A.3. Proof of Theorem 9

First note that by assumption, the expectation ofψi(x)
⊤ψi(x

′) is equal ki(x−x′). Thus it remains
to show that ψi(x)

⊤ψj(x
′) estimates ki(x)kj(x

′) when i ̸= j. Recall that by assumption, ψi is
constructed using i.i.d. samples from the inverse Fourier transform of the kernel ki, i.e., pi(ϑ).
Define ζϑ(x) = eiϑ

⊤x. Then the expectation is given by,

Eϑ,ϑ′ [ζϑ(x)ζϑ′(x′)] =

∫
ϑ,ϑ′∈Rn

pi(ϑ)pj(ϑ
′)eiϑ

⊤xe−iϑ′⊤x′
dϑdϑ′,

=

∫
ϑ∈Rn

pi(ϑ)e
iϑ⊤xdϑ

∫
ϑ′∈Rn

pj(ϑ
′)e−iϑ′⊤x′

dϑ′,

= Eϑ[ζϑ(x)]Eϑ′ [ζϑ′(x′)] = ki(x)kj(x
′).

A.4. Proof of Proposition 10

The proof of this proposition is given in the first two steps of the proof of Proposition 12.

Appendix B. Gaussian Process Regression

An important advantage of kernel methods is that they are amenable to theoretical guarantees and
uncertainty characterization. Gaussian Process (GP) regression (Williams and Rasmussen, 2006)
takes a Bayesian perspective, and provides posterior mean and variance estimates on function val-
ues. Confidence intervals of this form can be derived for kernel predictions even in frequentist set-
tings (Srinivas et al., 2009). Prior works have developed robust CCF-based controllers for unknown
models by incorporating Gaussian process (GP) regression (Castañeda et al., 2021; Castañeda et al.,
2021). We thus describe how to use our approximation methods for GP regression. These results
may be broadly of interest for any controller which makes use of GPs (Koller et al., 2018; Caldwell
and Marshall, 2021; Bradford et al., 2019; Hewing et al., 2020; Li et al., 2021).

B.1. Background

This section presents an overview of regression methods which explicitly model the uncertainty.
Bayesian linear regression is a probabilistic approach to regression analysis that models the relation-
ship between a set of input vectors {si}Ni=1 ∈ S ⊆ Rd and target output variables {zi}Ni=1 ∈ Z ⊆ R
as

zi = h(si) + ϵi, h(si) = s
⊤
i w,

where w ∈ Rd represents the linear model and {ϵi}Ni=1
i.i.d.∼ N (0, σ2

N ) are the noise. In contrast
to classical linear regression, Bayesian linear regression (BLR) not only estimates the parame-
ters of a linear model, but also provides a probabilistic interpretation of the model’s uncertainty.
More specifically, BLR treats the regression coefficients as random variables with a prior distribu-
tion, and computes the posterior distribution over these coefficients given N input-output data pairs
{(si, zi)}Ni=1.

The Bayesian linear model suffers from limited expressiveness. A simple approach to overcome
this problem is to map the input vectors {si}Ni=1 to a higher-dimensional feature space, where a
linear relationship can be established more easily. If such a map exists, we call it a basis function.
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Specifically, let ϕ : Rd → RD maps an input vector s ∈ Rd to a feature vector ϕ(s) ∈ RD. Now
the model becomes h(s) = ϕ(s)⊤w. Further, let the matrix Φ ∈ RN×D and the vector z ∈ RN

be the aggregation of rows {ϕ(si)⊤}Ni=1 and {zi}Ni=1, respectively. Assuming a Gaussian prior on
the model weights, i.e., w ∼ N (0,Σw), the posterior distribution of h(s∗) at a query point s∗ is
h(s∗) ∼ N (µ∗, σ

2
∗) with,

µ∗ = ϕ
⊤
∗ ΣwΦ

⊤(ΦΣwΦ
⊤ + σ2

NIN )−1z,

σ2
∗ = ϕ⊤

∗ Σwϕ∗ − ϕ⊤
∗ ΣwΦ

⊤(ΦΣwΦ
⊤ + σ2

NIN )−1ΦΣwϕ∗,
(7)

where we used the shorthand ϕ∗ = ϕ(s∗), µ∗ = µ(s∗) and σ∗ = σ(s∗) (Williams and Rasmussen,
2006). This distributional perspective characterizes the uncertainty in the model prediction. One
simple way to express the uncertainty is through a confidence interval. For Gaussian distributions,
confidence intervals take the form,

|µ(s∗)− h(s∗)| ≤ βσ(s∗),

where β ≥ 0 depends on the level of confidence. Below in Theorem 11, we present a formal version
of this confidence bound that holds even in the frequentist setting, meaning that it does not depend on
the distributional assumptions or Bayesian priors. However, the validity of the confidence interval
does depend on the choice of basis functions, as this determines the complexity and richness of the
modelled relationship between inputs s and outputs z. For data coming from a highly structured
process, it may be reasonable to specify a basis of small dimension. However, in general a suitable
compact basis may not be known a priori.

Kernel methods are used to allow for expressive basis functions of arbitrarily high or infinite
dimension. Using the kernel trick (Scholkopf and Smola, 2018; Müller et al., 2018), the posterior
(7) can be computed using only inner products of basis functions. A kernel function k : Rd×Rd →
R generalizes the idea of inner products between basis functions. Using kernel functions in this
context leads to the familiar Gaussian Process (GP) regression (Williams and Rasmussen, 2006).
GPs are commonly used as a nonparametric approach for representing complex functions. GP
regression corresponds to Bayesian regression in Reproducing Kernel Hilbert Spaces (RKHS), a
specific class of function space denoted as Hk(S) (Wendland, 2004). The RKHS is equipped with
the norm ∥h(s)∥k :=

√
⟨h(s), h(s)⟩ and is dense in the set of continuous functions, meaning that

any continuous function can be represented arbitrarily well by kernel regression.
In the RKHS setting, Srinivas et al. (2009) establishes the following frequentist confidence

interval.

Theorem 11 (Srinivas et al. (2009)) Assume that the noise sequence {ϵi}∞i=1 is zero mean and
uniformly bounded by σN . Let the target function h : S → R be a member of Hk(S) associated
with a bounded kernel k, with its RKHS norm bounded by B. Then, with probability at least 1− δ,
the following holds for all s ∈ S and N ≥ 1:

|µ(s∗)− h(s∗)| ≤
√
2B2 + 300γN+1 + ln3(

N + 1

δ
)σ(s∗),

where γN+1 is the maximum information gain after getting N + 1 data points.

The drawback of kernel methods is computation. Algorithms for fitting functions in an RKHS
to data have superlinear complexity in the number of data points. In particular, computing the
kernel approximator can be prohibitively expensive for large datasets. Solving (7) generally requires
O(N3) time and O(N2) memory.
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B.2. Affine posterior

In this section, we explicitly show the affineness of predicted µ and σ in u as products of input-
dependent and independent parts. We will use these calculation in the case study D.1 to control an
acrobat using CCF functions. Throughout, we define y := [u⊤ 1]⊤.

Kernel methods Under BLR assumptions, given a set of finite measurements of features and
labels of the form {(si, zi)}Ni=1, where zi = h(si) + ϵi, and ϵi ∼ N (0, λ2

N ), a posterior distribution
of h(s) at a query point s := (x,u) can be derived as follows: h(x,u) ∼ N (µx(u), σx(u)

2) with

µx(u) := µ(x,u) = z⊤(K + λ2
NIN )−1k(x,u), (8)

σx(u)
2 := σ(x,u)2 = k ((x,u), (x,u))− k⊤(x,u)(K + λ2

NIN )−1k(x,u), (9)

whereK ∈ RN×N is the Gram matrix whose entry at i, j is given by [K]i,j = k((xi,ui), (xj ,uj))
for i, j ∈ [N ]. Further, k(x,u) = [k((x,u), (x1,u1)) · · · k((x,u), (xN ,uN ))]⊤ ∈ RN , and
z ∈ RN is the vector containing the output measurements zi = h(si) + ϵi for i ∈ [N ].

In the following, we will show the affineness of µx(u) and σx(u)
2, when k((x,u), (x′,u′))

is an AD kernel (Definition 7). We refer to Castañeda et al. (2021) section 5 for the case of ADP
kernel (Definition 5). To proceed let X = {x1, . . . ,xN} and Y = {y1, . . . ,yN} be the two sets
containing the training data, where yi = [u⊤ 1]⊤. LetA(x,x′) andD(x,x′) be as in Definition 7,
and setM(x,x′) :=D(x,x′) +A(x,x′). Further, define

ktrain = blkdiag(y⊤1 , . . . ,y
⊤
N )[M(x1,x)

⊤ . . . M(xN ,x)⊤]⊤.

It’s immediate that k(x,u) = ktrainy. Therefore,

µx(u) = z
⊤(K + λ2

NIN )−1ktrain︸ ︷︷ ︸
=:ΞADK(X ,Y)

y,

= ΞADK(X ,Y)

[
u
1

]
,

σx(u)
2 = y⊤M(x,x)y − y⊤k⊤train(K + λ2

NIN )−1ktrainy,

= y⊤
[
M(x,x)− k⊤train(K + λ2

NIN )−1ktrain
]︸ ︷︷ ︸

=:GADK(X ,Y)

y,

= [u⊤ 1]GADK(X ,Y)

[
u
1

]
.

Since every nonzero real vector can be scaled to have 1 as the last entry, and from above σx(u)
2 =

[u⊤ 1]GADK(X ,Y)

[
u
1

]
for every u,GADK(X ,Y) is positive semi-definite.

=⇒ σx(u) =

∥∥∥∥ΩADK(X ,Y)

[
u
1

]∥∥∥∥
2

.

Random basis methods Recall that using random features, the posterior mean and covariance
can be approximated by

µ̂x(u) = φ(x,u)
⊤(Φ⊤Φ+ λNID)

−1Φ⊤z, (10)

σ̂x(u)
2 = λNφ(x,u)

⊤(Φ⊤Φ+ λNID)
−1φ(x,u). (11)
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ADP random features: From Definition 3, we know φ(x,u) = blkdiag(ψ1(x), . . . ,ψm+1(x))y.
Define ΨADP (x) := blkdiag(ψ1(x), ...,ψm+1(x)). As a result

µ̂x(u) = y
⊤Ψ(x)⊤(Φ⊤Φ+ λNID)

−1Φ⊤z︸ ︷︷ ︸
ΞADRF (X ,Y)

,

= [u⊤ 1]ΞADRF (X ,Y),

σ̂x(u)
2 = y⊤ λNΨ(x)⊤(Φ⊤Φ+ λNID)

−1Ψ(x)︸ ︷︷ ︸
GADPRF (X ,Y)

y,

= [u⊤ 1]λNGADPRF (X ,Y)

[
u
1

]
,

=⇒ σ̂x(u) =

∥∥∥∥ΩADPRF (X ,Y)

[
u
1

]∥∥∥∥
2

.

AD random features: From Definition 4, we know thatφ(x,y) = [ψ1(x) . . . ψm+1(x)]y. Define
ΨAD(x) := [ψ1(x) . . . ψm+1(x)]. Then, similar to ADP random features, we have,

µ̂x(u) = [u⊤ 1]ΞADRF (X ,Y),

σ̂x(u)
2 = [u⊤ 1]λNGADRF (X ,Y)

[
u
1

]
,

=⇒ σ̂x(u) =

∥∥∥∥ΩADRF (X ,Y)

[
u
1

]∥∥∥∥
2

.

B.3. Error bounds

For the purposes of robust control, it is necessary to track how the approximation error accumulates
in our computation of the posterior.

Sutherland and Schneider (2015) shows that with probability 1−δ, sup
x∈X

|ψ(x)⊤ψ(x)−k(x)| ≤

ϵ for D ≥ 8(d+2αϵ)
ϵ2

[
2

1+ 2
d

log
σpl
ϵ + log βd

δ

]
, where l is the diameter of X , σ2

p = Ep∥ω∥2 and βd, αe

are defined in Proposition 1 of Sutherland and Schneider (2015).
Define ks ∈ RN to be a vector containing the kernel k(si, s) for i = 1, . . . , N . LetU ∈ RN×m

be a matrix with rows {u⊤
i }Ni=1. We get the following error bound.

Proposition 12 Assume each i-th element of φC (14) is a member of Hki with bounded RKHS
norm, for i = 1, . . . ,m+1. Assume either the AD or ADP kernel with bounded kernels ki and that
we have access to measurements z. Assume ∥ks∥ ≤

√
Nκ and that λn = nλ. Let σmax be the max

singular value of U . Then with a probability of 1− (δ1 + δ2) we have:

|Ċ(x,u)− µ̂x(u)| ≤ βσ̂x(u) + ϵ(ν∥ux∥+ ιv|ux∥2 +∆)

where ν := σmax√
Nλ

(σn + 2βκ√
N

+ 2βϵ), ι = βϵσ2
max

Nλ ,

∆ = β∆σ + (βκ+
√
Nσn)∆µ,∆µ = 1

λ
√
N
[1 + κσmax

N
√
Nλ

+ κ√
Nλ

],∆σ = 1 + ϵ+ κ√
Nλ

.

Proof we split the proof to several steps:
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1. Approximating AD kernel pointwise:

|ki(x)ki(x′)− k̂i(x)k̂i(x
′)| = |ki(x)(ki(x′)− k̂i(x

′)) + (ki(x)− k̂i(x))k̂i(x)|,
≤ ϵ max(|ki(x)|, |k̂i(x′)|),
≤ ϵ, (12)

where we used the assumption that |ki(x)| ≤ 1 for all x ∈ X and all i ∈ [m + 1]. Let
E := A + D = [eij ]{i,j}, that is, eij is the element in ith row and jth column of E,
where A,D are as in Definition 7. Using (12), we conclude that eij − êij ≤ ϵ for all
1 ≤ i, j ≤ m+ 1. This further implies,

|kd((x,u), (x′,u′))− k̂d((x,u), (x
′,u′))| = |

∑
1≤i,j≤m+1

yi(eij − êij)y
′
j |

≤ ϵ(u⊤u′ + 1),

where kd((x,u), (x
′,u′)) is in Definition 7 and yi, y

′
j denote the ith and jth elements of

y := [u⊤ 1]⊤ and y′ := [u′⊤ 1]⊤, respectively.

2. Approximating ADP Kernel pointwise:

|kc((x,u), (x′,u′))− k̂c((x,u), (x
′,u′))| = |

∑
1≤i≤m+1

yi(eii − êii)y
′
i|

≤ ϵ(u⊤u′ + 1),

3. Approximating ADP, AD kernel matrices:
since we have the same bound on the estimation error of ADP kernel and AD kernel, the
following proofs hold for both kernels:

∥K − K̂∥2 ≤ ϵ∥[u⊤
i uj + 1]i,j∥2 ≤ ϵσ2

max + ϵ(m+ 1)

∥ks − k̂s∥ ≤ ϵ∥[u⊤
x ui + 1]i∥ ≤ ϵ∥ux∥.∥[u1, ...,uN ]∥+ ϵ

√
N ≤ ϵσmax∥ux∥+ ϵ

√
N

4. Approximating the mean:

|µx(u)− µ̂x(u)| = ∥z⊤∥∥(K̂ + λnI)
−1(ks − k̂s) + ((K + λnI)

−1 − (K̂ + λnI)
−1)ks∥

≤ ∥z∥
λn

∥k̂s − ks∥+
∥z∥.∥K̂ −K∥

λ2
n

∥ks∥

≤
√
Nσn
Nλ

∥k̂s − ks∥+
√
Nσnκ

n2λ2
∥K̂ −K∥

≤
√
Nσn
Nλ

(ϵσmax∥ux∥+ ϵ
√
N) +

√
Nσnκ

N2λ2
(ϵσ2

max + ϵN)

≤ ϵ∥ux∥
σmaxσn√

Nλ
+
√
Nσn∆µ

Where we used (K +λI)−1 − (K̂ +λI)−1 = (K̂ +λI)−1(K̂ −K)(K +λI)−1, and that
the smallest eigenvalue of K̂ + λI andK + λI is at least λ.
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5. Approximating variance: Assume σx(u) + σ̂x(u) ≤ 1

|σx(u)− σ̂x(u)| ≤ |σx(u)2 − σ̂x(u)
2|

≤ ϵ+ |ks[(K + λ)−1k⊤s − (K̂ + λ)−1k̂⊤s ] + [ks − k̂s](K̂ + λ)−1k̂⊤s |

≤ ϵ+ ∥ks∥
|µx(u)− µ̂x(u)|

∥z∥
+

ϵσmax∥ux∥+ ϵ
√
N

Nλ
∥k̂s∥

≤ ϵ+ κ(ϵ∥ux∥
σ2
max

Nλ
+∆µ)

+
ϵσmax∥ux∥+ ϵ

√
N

Nλ
(κ+ ϵσ2

max∥ux∥+ ϵ
√
N)

≤ ∥ux∥
2ϵσ2

max√
Nλ

(
κ√
N

+ ϵ) + ∥ux∥2
ϵ2σ2

max

Nλ
+∆σ + κ∆µ

6. Bounds on total error: with a probability of 1−(δ1+δ2):

|Ċx(u)− µ̂x(u)| ≤ |µx(u)− Ċx(u)|+ |µx(u)− µ̂x(u)|
≤ βσ̂x(u) + β|σx(u)− σ̂x(u)|+ |µx(u)− µ̂x(u)|
≤ βσ̂x(u) + ∥ux∥ν + ∥ux∥2ι+∆s

Appendix C. Empirical Compound Random Basis Comparison

In this Appendix, we perform experiments with synthetic data to demonstrate the relationship be-
tween training time and RMSE for ADP-RF and AD-RF models. Specifically, we use the following
control-affine function to generate the data,

hm(x,u) = 3 sin(2πx⊤w1)− 2 sin(4πx⊤w2) +
m∑
j=1

(γj sin(2πx
⊤wj+2))uj + ϵ, (13)

where w1,w2 ∈ Rn parameterize f(x) := 3 sin(2πx⊤w1) − 2 sin(4πx⊤w2), and {wj+2}mj=1 ∈
Rn parameterize g(x) := [γ1 sin(2πx

⊤w3) γ2 sin(2πx
⊤w4) · · · γm sin(2πx⊤wm+2)], such that

hm(x,u) = f(x) + g(x)u + ϵ is affine in u. All the (entries of) weights w and γ are sampled
uniformly at random from [0, 1).

We use the function (13) to generate data for varied input dimension m = 1, ..., 20. For each
m = k, to generate hm(x,u), we use the previous weights w1, . . . ,wk+1, γ1, . . . , γk−1 and only
generate new weights for j = k, that is wk+2 and γk.

For each input dimension, we sample 1000 values of xi ∈ R6 and ui ∈ Rm uniformly at
random from [0, 1). For each i, we set the label yi = hm(xi,ui)+ϵi where ϵi ∼ N (0, 0.01). Using
this dataset, we train and evaluate AD-RF, ADP-RF on a 90/10 train/test split. For all methods,
we use λ = 1 and rbf γ = 1. To choose feature dimensions, we vary the state-dependent basis
dimension starting from 22, and is incremented by 22 for 10 steps; this is roughly chosen based
on the widely considered best random features dimension of

√
n log n. The ADP compound basis
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Figure 3: Evaluation of models, comparing prediction accuracy on 100 test data points against av-
erage training time on 900 data points for m = 1, 10, 20 respectively. Random features
are sampled 10 times at matching compound dimensions; the panels display median and
quartile RMSE over the trials. Increasing m demonstrates the advantage of AD-RF basis
over ADP-RF in RMSE for fixed train-time.

dimension would be the multiplication of these dimensions by m+1. For fair comparison, we make
sure that both the compound basis dimensions match. At each dimension, we resample the random
features 10 times, and record the training time and test RMSE.

Figure 3 plots the median and quartile RMSE against the average training time. For lower
dimensional inputs u, at a given train time, ADP-RF and AD-RF perform similarly. However with
increasing m, the performance gap between AD-RF and ADP-RF becomes larger. Specifically
at larger m’s, AD-RF converges faster at a lower RMSE; This means AD-RF reaches its optimal
RMSE at a lower train-time, which implies that at lower feature dimensions, AD-RF captures the
complexity of the model, whereas to ensure the same for ADP-RF, we need more complex and
higher dimensional features.

Appendix D. Robust CCF Control

In Section 4, we present a certainty-equivalent approach to data-driven control using CCF control
as a case study. Here, we additionally present a robust approach. It allows for synthesizing a data-
driven control law which robustly enforces the constraint in CCF-QP.

D.1. Robust Bayesian Data-driven Controller

In this section, we show how to construct a robust data driven control law given the control-affine
basis functions (introduced in Section 3.1). Similar to Section 4, we suppose that the dynamics f
and g are unknown, so the robust CCF controller cannot be directly implemented. We assume that
a valid CCF C and comparison function α for the unknown true system is given. Given a sampled
trajectory {(xi,ui)}Ni=1, we construct a control affine modelling problem for Ċ : X ×U → R as
described in Example 3. Specifically, we use GP regression to model the uncertainty and compute
the mean µx(u) := µ(s) and variance σx(u) := σ(s) according to (7). As first proposed in the
GP context by Castañeda et al. (2021), we make use of the 1 − δ confidence interval presented in
Theorem 11 to construct an optimization-based controller. The data-driven min-norm stabilizing
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feedback control law u∗ : X → U is defined as

u∗(x) = argmin
u∈U

∥u∥22 (BLR-CCF-SOCP)

s.t. µx(u) + βσx(u) + α(C(x)) ≤ 0

This optimization problem will be a Second-Order Cone Program (SOCP) as long as the con-
straint is a conic in u. This follows from the form of the mean and variance function, and can be
guaranteed as long as the basis function ϕ is affine in u. This is a natural requirement due to the
affine structure of the dynamics.

Ċ(x,u) = ∇C(x)⊤f(x) + (∇C(x)⊤g(x))u,

= φC

[
u
1

] (14)

where φC ∈ R1×(m+1).
When a random features approximation is used, there is an additional error term that much be

accounted for in proper robust control. Leveraging the error analysis presented in Section B.3, we
present (RF-CCF-SOCP) which is both computationally efficient and robust.

u∗(x) = argmin
u∈Rm

∥u∥22 (RF-CCF-SOCP)

s.t. µ̂x(u) + βσ̂x(u) + ϵ(ν∥ux∥+ ι∥ux∥2 +∆) + α(C(x)) ≤ 0

Appendix E. Experimental Details

E.1. Double pendulum dynamics derivation

We consider a frictionless two-link pendulum with torque τ1 applied at a fixed base, where the first
link is attached, and torque τ2 applied at the opposite end, where the second link is attached. The
links are modeled as point masses m1 and m2 at lengths l1 and l2 from the joints. We define θ1 as
the angle of the first link, measured from the upright positive, and θ2 as the angle of the second link,
measured from the first link. The corresponding angular rates are θ̇1 and θ̇2.

Letting q = [θ1, θ2], the total kinetic energy of the system is given by

T (q, q̇) =
1

2
((m1 +m2)l

2
1 + 2m2l1l2 cos θ2 +m2l

2
2)θ̇

2
1 + (m2l1l2 cos θ2 +m2l

2
2)θ̇1θ̇2

+
1

2
m2l

2
2θ̇

2
2, (15)

and the potential energy of the system is given by

U(q) = (m1 +m2)gl1 cos θ1 +m2gl2 cos (θ1 + θ2). (16)

As a result, the Lagrangian of the system takes the following form,

L(q, q̇) = T (q, q̇)− U(q),

=
1

2
((m1 +m2)l

2
1 + 2m2l1l2 cos θ2 +m2l

2
2)θ̇

2
1 + (m2l1l2 cos θ2 +m2l

2
2)θ̇1θ̇2,

+
1

2
m2l

2
2θ̇

2
2 − (m1 +m2)gl1 cos θ1 −m2gl2 cos (θ1 + θ2). (17)
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Now we can write the Lagrange equations as follows

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= τ . (18)

The partial derivatives are given by

∂L(q, q̇)

∂θ̇1
= ((m1 +m2)l

2
1 + 2m2l1l2 cos θ2 +m2l

2
2)θ̇1 + (m2l1l2 cos θ2 +m2l

2
2)θ̇2,

∂L(q, q̇)

∂θ1
= (m1 +m2)gl1 sin θ1 +m2gl2 sin (θ1 + θ2),

∂L(q, q̇)

∂θ̇2
= (m2l1l2 cos θ2 +m2l

2
2)θ̇1 +m2l

2
2θ̇2,

∂L(q, q̇)

∂θ2
= −m2l1l2 sin θ2θ̇

2
1 −m2l1l2 sin θ2θ̇1θ̇2 +m2gl2 sin(θ1 + θ2).

This further implies,

d

dt

∂L(q, q̇)

∂θ̇1
= ((m1 +m2)l

2
1 + 2m2l1l2 cos θ2 +m2l

2
2)θ̈1 + (m2l1l2 cos θ2 +m2l

2
2)θ̈2

− 2m2l1l2 sin θ2θ̇1θ̇2 −m2l1l2 sin θ2θ̇
2
2,

d

dt

∂L(q, q̇)

∂θ̇2
= (m2l1l2 cos θ2 +m2l

2
2)θ̈1 +m2l

2
2θ̈2 −m2l1l2 sin θ2θ̇1θ̇2.

With these results, we can write the following Lagrange equations

d

dt

∂L(q, q̇)

∂θ̇1
− ∂L(q, q̇)

∂θ1
= τ1,

=⇒ ((m1 +m2)l
2
1 + 2m2l1l2 cos θ2 +m2l

2
2)θ̈1 + (m2l1l2 cos θ2 +m2l

2
2)θ̈2

− 2m2l1l2 sin θ2θ̇1θ̇2 −m2l1l2 sin θ2θ̇
2
2 − (m1 +m2)gl1 sin θ1 −m2gl2 sin (θ1 + θ2) = τ1.

Similarly,

d

dt

∂L(q, q̇)

∂θ̇2
− ∂L(q, q̇)

∂θ2
= τ2,

=⇒ (m2l1l2 cos θ2 +m2l
2
2)θ̈1 +m2l

2
2θ̈2 −m2l1l2 sin θ2θ̇1θ̇2 +m2l1l2 sin θ2θ̇

2
1

+m2l1l2 sin θ2θ̇1θ̇2 −m2gl2 sin(θ1 + θ2) = τ2,

=⇒ (m2l1l2 cos θ2 +m2l
2
2)θ̈1 +m2l

2
2θ̈2 +m2l1l2 sin θ2θ̇

2
1 −m2gl2 sin(θ1 + θ2) = τ2.

From the above Lagrange equations, we write the following manipulator equation,

M(q)q̈ +C(q, q̇)q̇ = τg(q) +Bu. (19)
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where

M(q) :=

[
(m1 +m2)l

2
1 + 2m2l1l2 cos θ2 +m2l

2
2 m2l1l2 cos θ2 +m2l

2
2

m2l1l2 cos θ2 +m2l
2
2 m2l

2
2

]
, (20)

C(q, q̇) :=

[
−2m2l1l2 sin θ2θ̇2 −m2l1l2 sin θ2θ̇2
m2l1l2 sin θ2θ̇1 0

]
, (21)

τg(q) :=

[
(m1 +m2)gl1 sin θ1 +m2gl2 sin (θ1 + θ2)

m2gl2 sin(θ1 + θ2)

]
, (22)

B :=

[
1
1

]
, u :=

[
τ1
τ2

]
, q :=

[
θ1
θ2

]
, q̇ =

[
θ̇1
θ̇2

]
, q̈ =

[
θ̈1
θ̈2

]
. (23)

Therefore, the state of the acrobat is x = (q, q̇) = (θ1, θ2, θ̇1, θ̇2), where, θ1, θ2 ∈ [0, π] and
θ̇1, θ̇2 ∈ R. The input u = [τ1, τ2] is of 2 dimensions. The manipulator equation can be written as
the following control affine dynamics.

ẋ =

[
q̇

M(q)−1 (−C(q, q̇)q̇ + τg(q))

]
︸ ︷︷ ︸

f(x)

+

[
0

M(q)−1B

]
︸ ︷︷ ︸

g(x)

u (24)

E.2. CCF Modelling Problem

We consider a control affine modelling problem in the setting of learning the residual errors from
a nominal dynamics model (Example 4) for a CCF (Example 3). The true dynamics model f , g is
defined according to the equations above with m1 = m2 = l1 = l2 = 1 while the nominal dynamics
model f̃ , g̃ is defined with incorrect values of mass and length, m̃1 = m̃2 = l̃1 = l̃2 = 0.6. The
CCF is a CLF and is defined to ensure stability to the origin:

C(x) = x⊤Px, P =


12 0 3.16 0
0 12 0 3.16

3.16 0 4.04 0
0 3.16 0 4.04

 .

Using the nominal model, ˙̃C(x,u) = ∇C(x)⊤(f̃(x)+g̃(x)u). The goal of the modelling problem
is to learn the residual Ċ(x,u) − ˙̃C(x,u). Given a sampled trajectory {xi,ui}L+1

i=1 , we compute

{C(xi)}L+1
i=1 and use forward finite differencing to approximate { ˆ̇Ci}Li=1. Then the regression tar-

gets are defined as zi =
ˆ̇Ci − ˙̃C(xi,ui).

E.3. Nominal Control Data Collection

We collect data using a controller designed with the nominal dynamics models. The control law
is given by CCF-QP with c1 = 25, ud(x) a feedback linearizing controller designed for nominal
dynamics f̃ , g̃, C(x) = x⊤Px defined above, f̃ , g̃ used in place of f , g, and α(c) = 0.725c.
Additionally, the hard constraint is replaced with a slack variable with penalty coefficient 1e6.

The nominal control law is simulated in closed-loop with the true dynamics using Runge-Kutta
4(5) at 10 Hz. We collect E = 226 trajectories starting from different initial conditions. The initial
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conditions comprise of a meshgrid of coordinates of the different initial states. Each trajectory is 5
seconds long, resulting in L+ 1 = 50 sampled points, the final datasize is of size 11074.

For the prediction experiments, the data is split into a test and train set shuffled at random.

E.4. Closed-Loop Experiments

We evaluate six controllers starting from initial state x0 = [2, 0, 0, 0]. All simulations during data
collection and evaluation use Runge-Kutta 4(5) at 10 Hz.

The nominal controller is described above. The oracle controller is given by CCF-QP with
the same parameters as the nominal, except that the constraint uses the true dynamics f , g. Each
of the four data-driven controllers is defined using an affine model of the residual ĥ. The control
law is defined by CCF-QP where Ċ(x,u) is replaced with ˙̃C(x,u) + ĥ(x,u), the slack penalty
is 1e6 · (t + 1) where t is the time in seconds, and otherwise the parameters are the same as for
the nominal/oracle controllers. Section B.2 presents the precise affine form in terms of the training
data.

Each data-driven model ĥ is trained in an episodic manner. The process is warm started with
subsampling the nominal grid data at a rate of 1/5 resulting in 2215 data points. This initial training
dataset defines an affine model (AD-K, ADP-K, AD-RF, or ADP-RF) which in turn defines a data-
driven controller. We simulate the data-driven controller in closed loop starting from x0 for 10
seconds, add the resulting data to the training set, and retrain. We repeat for 10 episodes, resulting
in a training set size of 3215, and report the performance of the final controller.
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