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Abstract
Algorithmic fairness is an important topic as predictive algorithms, including those based on artifi-
cial intelligence, become increasingly prevalent. There are a variety of fairness measures to choose
from, but calibrated uncertainty estimates are often necessary for accurate predictions. In this study,
we analyze the interplay between calibration and fairness measures and found that it is possible to
achieve fairness while maintaining calibration through proper thresholding of the non-binary scores
associated with classification tasks. Our findings highlight the complexity of balancing calibrated
performance with fairness considerations in machine learning applications and the importance of
carefully selecting the threshold in order to achieve the desired fairness metrics.

1. Related Work
Algorithmic fairness is receiving significant attention due to the increasing use of predictive

algorithms, including those based on artificial intelligence. In a binary classification task, well-
calibration means that individuals assigned score s must have probability s of belonging to the
positive class, regardless of group membership. However, in practice, the score is often continuous-
valued and must be binarized through a thresholding operation to generate a binary prediction.
This raises questions about the interplay between calibration and fairness metrics, predictive parity,
equalized odds, and statistical parity.

Previous research has shown that equalized odds, defined as the condition in which both groups
have the same average binary score, may not be compatible with well-calibration when there are
unequal base rates and imperfect prediction Kleinberg et al. (2016). One proposed solution is to
weaken the definition of equalized odds in order to achieve calibration Pleiss et al. (2017), but this
approach has limitations, particularly in sensitive cases such as healthcare. This approach involves
post-processing algorithms that withhold labels for a portion of the data, which may not be practical
or desirable in certain situations. There has been some further work on a reconciliation Reich and
Vijaykumar (2020) under some conditions.

There is research that shows incorporating fairness metrics may not always improve net benefit
compared to calibrated models followed by thresholding Pfohl et al. (2022). However, Garg et al.
(2020) has shown that through proper thresholding, well-calibration is not necessarily incompatible
with statistical parity. This issue has not been studied in greater depth.

In this paper, we propose a more concrete analysis of the interplay between calibration and fair-
ness metrics, specifically focusing on proper thresholding of calibrated scores in a binary setting as
proposed by Garg et al. (2020) while considering the complexities involved in working with con-
tinuous and binary domains. We show it is possible to use proper thresholding of calibrated scores
to satisfy equalized odds and statistical parity. We highlight the nuances between calibration and
predictive parity and give specific obtainable threshold to achieve predictive parity given calibrated
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scores. We also discuss the need to identify the appropriate threshold on a given dataset, and the
potential implications of relaxing definitions of fairness metrics.

2. Problem setting

2.1. fairness metrics
equalized odds: A predictor satisfies equalized odds if both the true positive rate (TPR) and

(separately) the false positive rate (FPR) are the same across groups. More formally, equalized odds
requires that the group-specific TPR satisfy p(ỹ = 1|y = 1, G = 0) = p(ỹ = 1|y = 1, G = 1) and
that the group-specific FPR satisfy p(ỹ = 1|y = 0, G = 0) = p(ỹ = 1|y = 0, G = 1).
predictive parity: we consider that predictive parity is satisfied when the positive predictive value(PPV)
is the same for both groups. PPV is defined as the probability that individuals predicted to belong to
the positive class actually belong to the positive class. Mathematically, predictive parity therefore
requires p(y = 1|ỹ = 1, G = 0) = p(y = 1|ỹ = 1, G = 1).
We note that some authors define predictive parity in a more constrained manner, requiring not only
parity for PPV, but also for its counterpart, negative predictive value (NPV), which requires addi-
tionally satisfying p(y = 0|ỹ = 0, G = 0) = p(y = 0|ỹ = 0, G = 1). The terms “overall predictive
parity” or “conditional use accuracy equality” have been usedtto describe a predictor with equality
across groups in both PPV and NPV.
Statistical parity: sometimes referred to as group fairness or demographic parity) is achieved when
members of both groups are predicted to belong to the positive class at the same rate. Mathemat-
ically, this means satisfying p(ỹ = 1|G = 0) = p(ỹ = 1|G = 1). Notably, this metric gives
no consideration to the outcomes y. Therefore, when the base rates p(y|G) differ across the two
groups, statistical parity rules out the perfect predictor.

To provide an initial framing, it is interesting to note that using the basic probability relation
p(A,B) = p(A|B)p(B) = p(B|A)p(A), the respective probability distributions associated with
each of these three metrics can be expressed as follows:

p(y, ỹ|G) = p(y|ỹ, G)︸ ︷︷ ︸
Predictive Parity

× p(ỹ|G)︸ ︷︷ ︸
Statistical Parity

= p(ỹ|y,G)︸ ︷︷ ︸
Equalized Odds

× p(y|G)︸ ︷︷ ︸
Base Rate

(1)

With respect to metrics such as statistical parity, equalized odds and predictive parity that evaluate
fairness by comparing binary predictions with binary outcomes, pairwise combinations of metrics
can be simultaneously satisfied only under very limited conditions, if at all. Garg et al. (2020).

2.2. calibration
in this paper, we are interested in whether we could threshold calibrated scores to achieve each

of these metrics, we start by defining calibration in a binary setting:
calibration: An algorithm is calibrated if for all scores s, the individuals who have the same
score have the same probability of belonging to the positive class, regardless of group membership.
Mathematically, this is expressed through p(y = 1|S = s,G = 0) = p(y = 1|S = s,G = 1)
There is another related metric termed well-calibration or calibration within groups that imposes
an additional, more stringent condition. In order for a model to be well-calibrated (or to have
calibration within groups), individuals assigned score s must have probability s of belonging to the
positive class.
The difference between calibration and well-calibration is simply one of mapping; the scores of
a calibrated predictor can, using a suitable transformation, be converted to scores satisfying well-
calibration.
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2.3. Balance for positive/negative class
Kleinberg et al. (2016) have noted that when the average score s for all individuals constituting

the group-specific positive class is the same for both groups of interest, it can be said that there
exists balance for the positive class. Similarly, balance for the negative class is satisfied when
the average score s for members of the negative class are equal, regardless of group membership.
Mathematically this is expressed in terms of expected values. For the negative class, balance re-
quires E[s|y = 0, G = 0] = E[s|y = 0, G = 1], and for the positive class balance requires
E[s|y = 1, G = 0] = E[s|y = 1, G = 1].

2.4. calibration and predictive parity
It is possible to view calibration as a generalization of predictive parity to the non-binary setting.

Of course, in general the score s is not binary. A continuous-valued score can be binarized through a
thresholding operation to generate a binary prediction ỹ. However, it is not the case that thresholding
a calibrated score in this manner necessarily leads to predictive parity. consider a threshold s = t ∈
[0, 1], such that ∀s > s = t, ỹ = 1 and ỹ = 0 otherwise. Hence, the distribution relevant to
predictive parity p(y = 1|ỹ = 1, G) can be expressed p(y = 1|s > s = t, G). Using this we can
write:

p(y, s > s = t|G) =

∫ 1

s=t
p(y|s,G)︸ ︷︷ ︸

calibration term

p(s|G)ds

a binary prediction ỹ. However, it is not the case that thresholding a calibrated score in this manner
necessarily leads to predictive parity.

To prove this, consider a threshold s = t ∈ [0, 1], such that ∀s > s = t, ỹ = 1 and ỹ = 0
otherwise. Hence, the distribution relevant to predictive parity p(y = 1|ỹ = 1, G) can be expressed
p(y = 1|s > s = t, G). Using this we can write:

p(y, s > s = t|G) =

∫ 1

s=t
p(y|s,G)︸ ︷︷ ︸

calibration term

p(s|G)ds (2)

=⇒ p(y|s > s = t, G)︸ ︷︷ ︸
predictive parity term

=

∫ 1
s=t p(y|s,G)p(s|G)ds∫ 1

s=t p(s|G)ds
(3)

The above equation relates predictive parity to calibration, showing that even when the calibration
term p(y|s,G) is the same for both groups, the probability distribution of the score, expressed in
equation 3 through p(s|G), can vary across groups in a way that causes predictive parity not to be
satisfied. To make this more intuitive, we will consider a special case where there are only two score
values s1 and s2 above the threshold s = t such that p(s|G) ̸= 0. In other words, all individuals
who receive risk scores above the threshold have the possibility of receiving one of only two scores,
s1 or s2. Hence, p(s > s = t|G) = p(s = s1|G) + p(s = s2|G).

Under this special case equation 3 reduces to:

p(y = 1|ỹ = 1, G) =
p(y = 1|s = s1, G)p(s = s1|G) + p(y = 1|s = s2, G)p(s = s2|G)

p(s = s1|G) + p(s = s2|G)
(4)
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Using this scenario, consider an example in which we have 100 people in each of two groups:
orange and blue (this is a new example, unrelated to the example using orange and blue groups
introduced earlier in the paper). Consider further an algorithm that only gives one of three possible
scores (0.25, 0.5 or 0.75) to every individual’s loan application. Suppose that scores are being
binarized using a threshold of 0.49, such that any individual with a score above 0.49 is deemed to
belong to the positive class. In this example, this would mean there are two possible scores (0.5 and
0.75) that can lead to a positive prediction. This is illustrated in Table 1 given below.

Table 1: Predictive Parity and Calibration Example
Score Orange Group Blue Group Prediction after threshold with s = t = 0.49

0.25 40 (16) 40 (16) Negative
0.5 20 (10) 40 (20) Positive

0.75 40 (30) 20 (15) Positive
Total 100(56) 100(51)

The first column represents the score that the model assigned. In the second and third columns,
the numbers outside the parentheses convey the number of people in the group assigned that score.
The numbers in parentheses represent the number of people from those assigned that score who
actually belong to the positive class. In this example the predictor is calibrated, since given a
score, the fraction of people who actually belong to the positive class is independent of the group.
Does this model satisfy predictive parity? Choosing 0.49 as the threshold gives a total of 60 positive
predictions for both the orange group and the blue group. However, of the people with scores greater
than 0.49, only 40 members in the orange group and 35 members of the blue group are actually in
the positive class, resulting in a PPV of 40/60 = 0.66 for the orange group and 35/60 = 0.583 for
the blue group. Thus, while the predictor is calibrated, choosing a threshold of 0.49 does not lead
to a set of binary predictions that satisfy predictive parity.

It is also interesting to note that if all persons who had a score of 0.25 are instead given a score
of 0.4, the model will not only be calibrated (because, as before, people with the same score have
the same probability of belonging to the positive class) but also well-calibrated (because, due to
this change in scoring, for all scores the score itself would give the probability of belonging to the
positive class). However, this change in score would have no impact on the thresholding example
above, illustrating that even a well-calibrated model does not, after applying a threshold to produce
binary predictions, necessarily satisfy predictive parity.

2.5. calibration and statistical parity
It is possible to simultaneously achieve both statistical parity and calibration. For example, in

the scenario described in table 1, applying a threshold of 0.49 to the calibrated scores resulted in
binary predictions that satisfied statistical parity for both groups, even though the base rates were
different. In this case, 60 individuals from each group were predicted to belong to the positive class,
despite the fact that a total of 56 individuals from the orange group and 51 individuals from the blue
group actually belonged to the positive class. Additionally, even if all individuals with a score of
0.25 were given a score of 0.4, the model would still be well-calibrated and satisfy statistical parity
for the threshold of 0.49, despite the imperfect prediction. This demonstrates that statistical parity,
as defined in section 2, is not necessarily incompatible with calibration and well-calibration, even
when the base rates are different and the prediction is not perfect.
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It is important to note that fairness metrics designed for use with scores s may differ from those
intended for use with binary predictions. While it is easy to convert scores to binary values through
thresholding, this process can mask the complexities of whether fairness metrics are still met after
the thresholding. For instance, in the example above, the scores were calibrated and applying a
threshold of 0.49 resulted in binary predictions that exhibited statistical parity. However, if the
same distribution of scores had been subject to a threshold of 0.55, the resulting predictions would
not have satisfied statistical parity. This emphasizes the need to consider the impact of threshold
selection on fairness metrics.

3. results

3.1. calibration and predictive parity
One question that arises is whether there always exists a threshold at which thresholding cali-

brated scores satisfies predictive parity. To address this, we can consider a scenario in which pre-
dictive parity is satisfied for a given calibrated score at the threshold s = t. In this case, we must
have:

∫ 1
s=t p(y|s)p(s|G1)ds∫ 1

s=t p(s|G1)ds
−

∫ 1
s=t p(y|s)p(s|G2)ds∫ 1

s=t p(s|G2)ds
= 0 (5)

Note that we abbreviated p(y|s,G1) = p(y|s,G2) to p(y|s). Here’s a further analysis of these
functions: Also note that at s=0,∫ 1

0 p(y|s)p(s|G1)ds∫ 1
0 p(s|G1)ds

=
p(y, s > 0|G)∫ 1
s=t p(s|G1)ds

= p(y|G)

so 5 reduces to the difference of the base rates, which we could assume is positive, without loss of
generality. At s = 1 using the l’Hôpital rule we have,

lim
t→1

∫ 1
s=t p(y|s)p(s|G1)ds∫ 1

s=t p(s|G1)ds
−

∫ 1
s=t p(y|s)p(s|G2)ds∫ 1

s=t p(s|G2)ds
= lim

t→1
p(y|t)− p(y|t) = 0 (6)

So to show that the function has zeros inside (0, 1) it’s enough to show that it’s not always posi-
tive,(by the intermediate value theorem). For that, it might be useful to look at the derivative.
However, an observation gives us a more immediate answer: Knowing that continuous scores are
in practice discrete, given our highest score is h , a cut off right below h would satisfy predictive
parity. This is because

p(y = 1|ỹ, G = 0) = p(y = 1|s > h− ϵ,G = 0) = p(y = 1|s = h,G = 0)

= p(y = 1|s = h,G = 1) = p(y = 1|ỹ, G = 1)

Our approach enables us to efficiently locate a threshold at which calibrated scores satisfy pre-
dictive parity. However, it is important to recognize that other thresholds may also satisfy this
fairness metric. As a result, it is necessary to carefully analyze the appropriate choice of thresh-
old among those that are allowed, taking into account the specific characteristics of the data and
the question being addressed. Therefore, the appropriate choice of threshold might depend on the
context.
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3.2. calibration and equalized odds
One question that arises is whether there exists a threshold that can be applied to calibrated

scores in order to achieve equalized odds. To address this question, we begin by making an obser-
vation: ∫ 1

s=t
p(y|s,G)p(s|G)ds = p(y|G)

∫ 1

s=t
p(s|y,G)

so if the answer to the above question is yes, we must have:∫ 1
s=t p(y|s,G1)p(s|G1)ds

p(y|G1)
−

∫ 1
s=t p(y|s,G2)p(s|G2)ds

p(y|G2)
= 0 (7)

or

∫ 1
s=t p(y|s,G1)p(s|G1)ds∫ 1
s=t p(y|s,G2)p(s|G2)ds

− p(y|G1)

p(y|G2)
= 0 (8)

first we observe that t = 0, 1 are solutions. At t = 0,∫ 1

0
p(y|s,G)p(s|G)ds = p(y|G)

∫ 1

0
p(s|y,G) = p(y|G)

this implies that 7 reduces to
p(y|G1)

p(y|G1)
− p(y|G2)

p(y|G2)
= 0

And at t = 1, using L’Hôpital rule we have 8 reduces to:

lim
t→1

∫ 1
s=t p(y|s,G1)p(s|G1)ds∫ 1
s=t p(y|s,G2)p(s|G2)ds

− p(y|G1)

p(y|G2)
=

p(y|t)p(t|G1)

p(y|t)p(t|G2)
− p(y|G1)

p(y|G2)
= 0

To understand where the zeros of this function are, we take derivative to find critical points:

p(y|t, G1)p(t|G1)

p(y|G1)
− p(y|t, G2)p(t|G2)

p(y|G2)
= 0 (9)

⇐⇒ p(y|t)
[
p(t|G1)

p(y|G1)
− p(t|G2)

p(y|G2)

]
= 0 (10)

⇐⇒ p(t|G1)

p(t|G2)
− p(y|G1)

p(y|G2)
= 0 (11)

Which illustrates that there will be a critical point where the ratio of statistical parity terms for
groups is equal to the base rates. Also note that

9 ⇐⇒ p(y|G1)p(t|y,G1)

p(y|G1)
− p(y|G2)p(t|y,G2)

p(y|G2)
= 0 (12)

⇐⇒ p(t|y,G1)− p(t|y,G2) = 0 (13)

Which describes those critical points as points where the equalized odds term is satisfied(note that
this is not the same as equalized odds being satisfied). To show that 7 has zeros outside of (0, 1) We
only need to check if the function 7 assumes values of different sign at these 11 ,13 points.
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Based on these observations, it appears that it may be possible to find a threshold that satisfies
equalized odds when working with calibrated scores. However, further analysis is needed to fully
understand the relationship between calibrated scores, thresholding, and equalized odds. The ap-
propriate choice of threshold might depend on the specific characteristics of the data and the desired
outcomes.

3.3. calibration and statistical parity
Another question that arises is whether there always exists a threshold that can be applied to

calibrated scores in order to achieve statistical parity. To address this question, we can derive the
following equation:

p(s > s = t|G) =

∫ 1
s=t p(y|s,G)p(s|G)ds∫ 1

s=t p(y|s,G)ds
=

p(y|G)
∫ 1
s=t p(s|y,G)ds∫ 1

s=t p(y|s,G)ds

this will imply, assuming we satisfy both statistical parity and calibration, we have to satisfy:∫ 1
s=t p(y|s)p(s|G1)ds∫ 1

s=t p(y|s,G1)ds
=

∫ 1
s=t p(y|s)p(s|G2)ds∫ 1

s=t p(y|s,G2)ds

with the same notation of abbreviating p(y|s,G1) = p(y|s,G2) to p(y|s).

4. conclusion and further questions
In this paper, we demonstrated that while calibrated scores may not inherently satisfy other

fairness metrics such as predictive parity, equalized odds, and statistical parity, it is possible to use
proper thresholding to achieve these desired outcomes in some cases. Specifically, we found that
by using a certain threshold, calibrated scores can generate predictions that satisfy predictive parity.
Additionally, we showed that it may also be possible to use thresholding to achieve equalized odds
and statistical parity, though the choice of the threshold can play an important role in determining
whether these conditions are satisfied. In our study, we also highlighted the complexities involved
in working with continuous and binary domains.

Furthermore, we discussed the role of observability in selecting fairness metrics and the impor-
tance of considering the specific problem at hand. We also noted that while there is evidence that
incorporating fairness metrics may not always improve net benefit compared to calibrated models
followed by thresholding Pfohl et al. (2022), it is still valuable to explore the underlying reasons for
thresholding and whether it automatically satisfies fairness metrics or requires careful selection of
the threshold.

In addition, we suggested that it may be interesting to test our analysis for equalized odds with
several popular distributions to gain further insights. Finally, we raised the question of whether it
is possible to relax definitions of fairness metrics and calibration in a sensible way and how this
might impact our results. Overall, our study highlights the complex nature of balancing calibrated
performance with fairness considerations in machine learning applications.
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